
Exploring Curriculum Learning on a CGP Logic
Optimization Flow

Naiara Sachetti, Bryan M. Lima, Augusto Berndt, Cristina Meinhardt and Jonata Tyska Carvalho
Department of Informatics and Statistics, Federal University of Santa Catarina - UFSC

Florianópolis, Brazil
naiara.sachetti@grad.ufsc.br, bryan.l@grad.ufsc.br, augusto.berndt@posgrad.ufsc.br,

cristina.meinhardt@ufsc.br, jonata.tyska@ufsc.br

Abstract—This work proposes an improvement to a Cartesian
Genetic Programming implementation for learning and optimiz-
ing logic circuits during logic synthesis. This step is an essential
part of the design flow for manufacturing circuits. In this context,
we work with evolutionary computing as an alternative to the
growing complexity of logic circuits. Our proposed improvement
to Cartesian Genetic Programming consists of a technique known
as Curriculum Learning, which classifies the input given during
learning, indicating if each input is easy or hard to learn. Our
results demonstrate that Curriculum Learning may provide a
better convergence during learning by distributing the difficulty
of inputs or prioritizing the hard inputs, since some experimented
exemplars achieve higher accuracy with the implemented tech-
nique.

Index Terms—Logic Optimization, Cartesian Genetic Pro-
gramming, Curriculum Learning

I. INTRODUCTION

The continuous technology evolution allows the implemen-
tation of more complex logic functions directly in integrated
circuits. Nowadays, there is a crescent demand for hardware
implementations of complex functions that requires new ap-
proaches for logic optimization tools, considering the large
number of inputs on these problems, for example, neural
networks. A derived approach is to explore Logic Learning
strategies instead of considering the complete logic description
of these functions. In this case, the Logic Synthesis problem
can be implemented with incompletely specified functions
attempting to generalize a reduced set of logic variables.

The logic learning problem has been investigated in the
previous two years on the IWLS contest [1], exploring the
generalization capability of Machine Learning methods to
optimize incomplete logic functions. The generalization capa-
bility of a logic learning method is measured by its accuracy,
calculated with a portion of the truth table not used for training
the models. Moreover, logic learning is also appropriated to
synthesize approximate circuits, since most of the approximate
strategies works with an incomplete Truth Table for the
original problem.

Most of the recent works about logic learning implement the
representation of a logic function with Boolean networks, such
as an AIG (And-Inverter-Graph). The AIG is the state-of-the-
art data structure for technology-independent optimizations
during logic synthesis [2]. Also, the approaches usually solve
the logic learning problem by mapping a Machine Learning

model to the Boolean network. The Machine Learning tech-
niques explored by previous work include Decision Trees [3]
[4], [5], Random Forests [5], Look-Up-Table (LUT) network
[6], [7], Neural Networks (NN) [7] and Cartesian Genetic
Programming (CGP) [8], [9].

The CGP technique is an evolutionary computing approach
introduced by [10] and described as so in [11]. Originally, it
uses directed acyclic graphs represented as a two-dimensional
grid of computational nodes to represent programs [12] (or,
in logic learning, circuits). Since its definition, other works
have also explored the implementation of Genetic Program-
ming as a logic learning technique, with an active research
community. Previous work on CGP usually attempt to improve
its main drawback: runtime [13]. In [8], [9], a CGP-based
flow is proposed seeking to improve the accuracy and size of
approximate circuits representing a logic function. The logic
minimization by CGP shows to be effective when considering
simultaneously accuracy and the number of nodes as objective
functions.

Despite the results presented on [8], [9] are promising
for many logic functions, the CGP-based solution does not
provide good results for many of the logic functions presented.
Therefore, the method would benefit from new mechanisms
and adjustments that could increase its evolvability, which
means the capacity of the evolutionary process to keep finding
better solutions. In this sense, a possible direction is trying to
seek among the techniques capable of improving the accuracy
of Machine Learning-based solutions, and investigate how they
can be explored in the proposed CGP logic optimization flow
to improve accuracy or reduce the time necessary to learn a
function. Following that direction, we decided to investigate a
technique called Curriculum Learning (CL) [14].

As first formalized by [15], a curriculum can be seen,
at an abstract level, as a sequence of training criteria, with
each training criterion being associated with a different set
of weights on the training examples. The authors of [16]
bring this concept to the context of evolutionary training of
embodied agents, using CL to manipulate the environmental
conditions in which the evolving agents are evaluated. The
goal is to select environmental conditions that challenge the
weakness of the current evolving agents, maintaining the
proper level of difficulty.

In this work, we apply the Curriculum Learning approach,

similar to the one in [16], to the CGP Logic Optimization
flow described in [8] and [9]. CL is used to select examples
in the training set accordingly to the difficulty of each example
in the training set and a difficulty function. The difficulty
of each example is defined as the number of times each of
the candidate solutions manage to produce the correct output
during the evolutionary process. Furthermore, we present
results of initial experiments that have as main goal to search
for evidences that the CL might be an effective strategy to
improve accuracy of evolving circuits.

II. BASE CGP-BASED FLOW

Our implementation of Curriculum Learning uses as foun-
dation the CGP-based optimization flow proposed in [9],
described in the Figure 1. Such flow is designed to perform
optimization of Boolean functions described as complete or
incomplete truth tables, being capable of accomplish that on
random initialized circuits (pure CGP flow) as well as on
previously optimized circuits (fine-tuning flow).

Fig. 1: CGP-based optimization flow used as foundation.
Source: [9].

After the establishment of an initial population of circuits,
each of them is evaluated and the ones with the best accuracy
and larger functional circuits (i.e. circuits with larger quantities
of functional nodes) are selected; This is known to lead to the
improvement of accuracy and faster convergence [14]. In a
second phase, smaller functional circuits are selected, aiming
to the shrinkage of circuit area. Finally, the new and optimized
circuit is generated and its accuracy and size are evaluated [9].

The node functions used in the flow are AND, Inverters and
XORs, this means that AIG (AND-Inverter Graph) and XAIG
(XOR-AIG) structures are used to represent circuits [9].

Also, it is possible to control the maximum number of
generations the CGP-based flow can use to evolve circuits.
In each generation the individuals are evaluated with mini-
batches, composed by a portion of combinations (i.e. lines in
the truth table) randomly selected from the truth table used as
training set. The number of combinations in each mini-batch
is given by the batch size hyperparameter. Mini-batches stay

unchanged by a certain number of generations, controlled by
the change each hyperparameter [9].

Keeping in mind that the main goal of our initial ex-
periments is to find evidences that the Curriculum Learning
might be an effective strategy to improve accuracy of evolving
circuits, some features of the CGP-based flow were established
to compose the comparison (and baseline) version to our
implementation of CL, named here CGP-noCL. They are:

• The circuits are represented only as AIGs.
• It uses only random generated initial populations.
• The ”Improve size” step was skipped.

In the following section, we describe the features of our
implementation of Curriculum Learning, made on top of CGP-
noCL.

III. METHODOLOGY

Our implementation of CL substitutes the random selection
of combinations for the mini-batches by a selection based on
the difficulty of each combination in the training set and in
some difficulty function.

The difficulty of a combination is given by Equation 1,
where Hi is the number of times a truth table line i output
was correctly predicted by a circuit being evaluated and Ei is
the number of times that line i participated of evaluations of
circuits.

Di =
Hi

Ei
(1)

In other words, the more the output of a line is correctly
predicted by the evaluated circuits (i.e. the more Di is close
to 1), the easier this combination is considered.

Initially, the difficulty of each line in the training set is
defined by a proceeding that evaluated each line by a number
of random generated circuits. These circuits are part of the
population to be evolved.

Similarly to what is presented by [16], the mini-batch
composition of lines, i.e. the curriculum, is selected with
respect to some difficulty interval. Such interval is defined
by the difficulty function.

Equation 2 determines each interval superior limit of diffi-
culty, where b is the mini-batch position index and m is the
value of batch size.

Lb =
f(b)

f(m)
(2)

So, ideally, each position in the batch will receive a line
classified in the interval for its own index. If no combination
is classified in a given interval, one from the nearest non-empty
neighbor interval (superior or inferior) is selected.

Figure 2 presents the range limits to a linear (in blue) and
a quadratic (in red) difficulty function for a batch size of 64.
Note that while the former is capable of creating balanced
mini-batches, the latter can form harder mini-batches.

Fig. 2: CL interval limit accuracy.

IV. EVALUATION AND RESULTS

The evaluation of our implementation was made with a
portion of the benchmarks of IWLS2020 contest (available at
[17]). Specifically, we used the functions with a maximum of
19 inputs, in order to make our analysis feasible with respect
to the computational resources at hand. The benchmarks used
are presented in Table I.

TABLE I: Benchmark information. Adapted from: [1] and [5].

InputsFunc. Logic type Min Max
Logic

Domain
20,21 Multipliers 16 16 Arithmetic
30 Comparators 20 20 Arithmetic
40,41,43 Square-root 10 18 Arithmetic
50 PicoJava design 19 19 Random
65,69,73,74 MCNC benchmarks 16 19 Random
75-79 Symmetric functions 16 16 Random

The experiments used the set of hyperparameters listed in
Table II. Initial population defines the number of individuals
used to establish the initial difficulty of the combinations
in the training set. The rest of hyperparameters presented
define the number of nodes in the circuits being selected,
the maximum number of generations, the size of the mini-
batches and the frequency with which the mini-batches will
be changed, respectively.

In this work, we used a set of default parameters for all
experiments, without exploring the hyperparameters, to define
a similar environment on all the evaluation and exclusively
observe the influence of the curriculum learning algorithm on
the accuracy of the CGP Logic Optimization flow. Thus. we
are interested on the difference between the investigated meth-
ods, keeping the investigation on hyperparameter optimization
as an intended future work.

TABLE II: Hyperparameters used

Parameter Value
Initial population 5
Number of nodes 250

Generations 50000
Batch size 64

Change each 250

The results of the experiments are summarized in Figures
3, 4b and 4a. For the box plots in Figure 3, the accuracies
obtained in each run for each benchmark were summarized
by making the mean of them. This was made separately
for the three situations: CGP-noCL and CGP with linear
and quadratic difficulty functions. The box plots present the
absolute differences between the means of the versions with
CL and the one without CL.

Observing the chart, it is possible to visualize that for the
major part of the benchmarks runned with CL, gains in average
accuracy were observed.

Fig. 3: Absolute differences with respect to mean of accuracies
in CGP-noCL.

To observe the results with more details, the Figure 4a
presents box plots for the absolute differences of each bench-
mark with respect to accuracies of CGP-noCL for the linear
difficulty function. Note that there are benchmarks where the
major part of the circuits evolved with CL had an overall supe-
rior accuracy than the ones evolved without CL. Furthermore,
ex73 only presented gains in accuracy and for ex50 gains of
nearly 20% were registered. On the other hand, also note that
at ex50 losses of nearly 20% were registered.

Figure 4b presents the box plots for the absolute differences
of each logic function with respect to accuracies of CGP-
noCL for the quadratic difficulty function. We can note a slight
improvement on the accuracy when it is adopted the quadratic
function in the Curriculum Learning algorithm, compared to
the CGP-noCL version. A particular behavior is observed to
the ex75, that only reports gains in accuracy, and the extreme
of gains and losses were of nearly 15% and 25%, respectively.

Additionally, Table III presents the maximum and minimum
number of coding nodes (i.e., in CGP, the number of nodes
that contributes to the calculation of the output data) in each
version of the flow. The circuits generated with the versions of
the flow with Curriculum Learning presented a small increase
in size.

TABLE III: Circuit sizes in number of functional nodes

Coding nodesFlow version Min Max
CGP-noCL 0 102
CGP-CLv1 linear 1 107
CGP-CLv1 quadratic 5 108

(a) For a linear difficulty function. (b) For a quadratic difficulty function.

Fig. 4: Absolute differences with respect to accuracies in CGP-noCL.

The preliminary charts presented make clear that Curricu-
lum Learning might be an effective technique to improve
accuracy in the CGP-based optimization flow. We intend to
investigate further to understand what are the main features
that distinguish the benchmarks that benefit from this tech-
nique and the ones that do not, as well as to comprehend the
hyperparameters that have direct impact on results.

V. CONCLUSION

Through this work, we proposed a technique to be combined
with a CGP-based flow for logic optimization, the Curriculum
Learning, and evaluated the possibility of it to be effective
in improving accuracy of evolved circuits by distributing the
difficulty of inputs or prioritizing the hard ones.

The results of our evaluation show that there are several
situations in which gains in accuracy were observed, with
a small increase in size, meaning that further investigation
is valuable and needed to understand better what influences
the gains and losses observed. Furthermore, the quadratic
approach seems to provide slightly higher accuracy results.

In future works, we intend to evaluate the hyperparame-
ters that affect directly the accuracy of circuits evolved and
optimize them. Also, we intend to execute another set of ex-
periments using other difficulty functions (e.g. root function).

ACKNOWLEDGMENT

This work was financed in part by National Council for
Scientific and Technological Development – CNPq and the
Propesq/UFSC.

REFERENCES

[1] Shubham Rai and et al. Logic synthesis meets machine learning: Trading
exactness for generalization. In 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2021.

[2] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken.
On-the-fly and dag-aware: Rewriting boolean networks with exact syn-
thesis. In 2019 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1649–1654, 2019.

[3] Valerio Tenace and Andrea Calimera. Inferential Logic: a Machine
Learning Inspired Paradigm for Combinational Circuits. In 2018
IFIP/IEEE International Conference on Very Large Scale Integration
(VLSI-SoC), pages 149–154, 2018.

[4] Brunno A. de Abreu, Augusto Berndt, Isac S. Campos, Cristina Mein-
hardt, Jonata T. Carvalho, Mateus Grellert, and Sergio Bampi. Fast
logic optimization using decision trees. In 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5, 2021.

[5] Wei Zeng, Azadeh Davoodi, and Rasit Onur Topaloglu. Lorax: Machine
learning-based oracle reconstruction with minimal i/o patterns. In 2021
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages
126–131, 2021.

[6] Satrajit Chatterjee. Learning and memorization. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 755–763. PMLR, 10–15 Jul 2018.

[7] Yukio Miyasaka, Xinpei Zhang, Mingfei Yu, Qingyang Yi, and Masahiro
Fujita. Logic Synthesis for Generalization and Learning Addition. In
2021 Design, Automation Test in Europe Conference Exhibition (DATE),
pages 1032–1037, 2021.

[8] Augusto Berndt, Brunno A. de Abreu, Isac S. Campos, Bryan Lima,
Mateus Grellert, Jonata T. Carvalho, and Cristina Meinhardt. Accuracy
and size trade-off of a cartesian genetic programming flow for logic
optimization. In Proceedings of the 34th Symposium on Integrated
Circuits and Systems Design, SBCCI ’21, 2021.

[9] Augusto Berndt, Brunno A. de Abreu, Isac S. Campos, Bryan Lima,
Mateus Grellert, Jonata T. Carvalho, and Cristina Meinhardt. A cgp-
based logic flow: Optimizing accuracy and size. Journal of Integrated
Circuits and Systems (JICS), 2022.

[10] Julian Miller, P. Thomson, T. Fogarty, and I Ntroduction. Designing
electronic circuits using evolutionary algorithms. arithmetic circuits: A
case study. Genetic Algorithms and Evolution Strategies in Engineering
and Computer Science, 10 1999.

[11] Julian F. Miller. An empirical study of the efficiency of learning
boolean functions using a cartesian genetic programming approach. In
Proceedings of the 1st Annual Conference on Genetic and Evolutionary
Computation - Volume 2, GECCO’99, page 1135–1142, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[12] Julian F. Miller. Cartesian Genetic Programming, pages 17–34. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[13] Julian Francis Miller. Cartesian genetic programming: its status and
future. Genetic Programming and Evolvable Machines, pages 1–40,
2019.

[14] Nicola Milano, Paolo Pagliuca, and Stefano Nolfi. Robustness, evolvabil-
ity and phenotypic complexity: insights from evolving digital circuits.
Evolutionary Intelligence, 12(1):83–95, 2019.

[15] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston.
Curriculum learning. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, page 41–48, New York,
NY, USA, 2009. Association for Computing Machinery.

[16] Nicola Milano and Stefano Nolfi. Automated curriculum learning for
embodied agents a neuroevolutionary approach. Scientific Reports,
11(8985):1–14, April 2021.

[17] IWLS 2020 programming contest. Iwls 2020 benchmarks.
https://github.com/iwls2020-lsml-contest/iwls2020-lsml-contest, 2020.

